MySensors – Ogólny poradnik z przykładami.
Długo zastanawiałem się jaki wpis na blogu zrobić na temat MySensors. Ponieważ jest to oddzielna odnoga tak jak google home, node red itd. Zdecydowałem, że zrobię wszystko w jednym poście, bo ja w sumie będę potrzebował tylko dwóch efektów, ale przygotuje po to oddzielna kategorie i gdy nie będę miał co omawiać, lub wy będziecie mieli pytania, to będę uzupełniał, albo ten wpis, albo będę robił nowe wpisy.
MySensors dla mnie to połączenie arduino razem z raspberry pi. Programujemy MySensors w środowisku arduino, więc jeżeli ktoś już miał styczność z arduino to będzie mu na pewno prościej. MySensors to również środowisko dosyć specyficzne, ale dające dużo możliwości, bo nie ogranicza nas soft, bo w końcu go sami tworzymy. Korzystamy oczywiście z gotowych rozwiązań, ale możemy w kod wplatać własne wstawki.
Przejdźmy do podstaw, czyli musimy pobrać arduino:
– Link do pobrania arduino
Cały poradnik postaram się uprościć, więc będzie mocne spłycanie tematów, więć jeżeli Twoja wiedza jest ponad podstawę, to nic nowego nie dowiesz się z tego poradnika, ale jeżeli dopiero zaczynasz, to poradnik okaże się pomocny.
Arduino opiera się na “bilbliotekach”, czyli przykładowych kodach, ale w skład tego wchodzą również pliki, które są wysyłane do arduino bez konieczności ich edycji. W praktyce to bez tych plików nie zadziała nasz sketch.
#include <MySensors.h>
Powyżej widzimy przykład takiego pliku i nie mamy go w zakładkach, więc przepisanie całego kodu, ale nie posiadając tego pliku, nie pozwoli nam uruchomić prawidłowo sketch, żeby prawidłowo kod działał.
W Arduino otwieramy Szkic>>Dołącz bibliotekę>>Zarządzaj bibliotekami:
Wyszukujemy bibliotekę MySensors i instalujemy. Poniższe zdjęcie ma wyszarzony przycisk instaluj, bo tę bibliotekę mam już zainstalowaną.
Po zainstalowaniu możemy od razu przejść do przykładów MySensors. W moim projekcie będę potrzebował sterowanie pinami w arduino mega i obsługą tego w domoticzu. Użyjemy do tego dwóch przykładów:
Wchodzimy Plik >> Przykłady >> MySensors >> RelayActuator
Dostajemy w Arduino kod, który będzie wymagał poprawek:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
/* The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2019 Sensnology AB * Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * The ArduinoGateway prints data received from sensors on the serial link. * The gateway accepts input on serial which will be sent out on radio network. * * The GW code is designed for Arduino Nano 328p / 16MHz * * Wire connections (OPTIONAL): * - Inclusion button should be connected between digital pin 3 and GND * - RX/TX/ERR leds need to be connected between +5V (anode) and digital pin 6/5/4 with resistor 270-330R in a series * * LEDs (OPTIONAL): * - To use the feature, uncomment any of the MY_DEFAULT_xx_LED_PINs * - RX (green) - blink fast on radio message received. In inclusion mode will blink fast only on presentation received * - TX (yellow) - blink fast on radio message transmitted. In inclusion mode will blink slowly * - ERR (red) - fast blink on error during transmission error or receive crc error */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
// Enable debug prints to serial monitor #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Enable repeater functionality for this node #define MY_REPEATER_FEATURE #include <MySensors.h> #define RELAY_PIN 4 // Arduino Digital I/O pin number for first relay (second on pin+1 etc) #define NUMBER_OF_RELAYS 1 // Total number of attached relays #define RELAY_ON 1 // GPIO value to write to turn on attached relay #define RELAY_OFF 0 // GPIO value to write to turn off attached relay void before() { for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Then set relay pins in output mode pinMode(pin, OUTPUT); // Set relay to last known state (using eeprom storage) digitalWrite(pin, loadState(sensor)?RELAY_ON:RELAY_OFF); } } void setup() { } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("Relay", "1.0"); for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Register all sensors to gw (they will be created as child devices) present(sensor, S_BINARY); } } void loop() { } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.getType()==V_STATUS) { // Change relay state digitalWrite(message.getSensor()-1+RELAY_PIN, message.getBool()?RELAY_ON:RELAY_OFF); // Store state in eeprom saveState(message.getSensor(), message.getBool()); // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.getSensor()); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
W kodzie znajdziemy linijkę odpowiadającą za łączność RF433
#define MY_RADIO_RF24
Zmieniamy na:
//#define MY_RADIO_RF24
Dodanie dwóch ukośników powoduje, że funkcja nie będzie wykonywana.
S_BINARY
Zmieniamy na:
S_LIGHT
Najważniejszy fragment kodu spolszczyłem:
#define RELAY_PIN 4 // Numer pinu Arduino Digital I/O dla pierwszego przekaźnika
#define NUMBER_OF_RELAYS 3 // Całkowita liczba podłączonych przekaźników.
#define RELAY_ON 1 // Wartość GPIO, aby włączyć przekaźnik
#define RELAY_OFF 0 // Wartość GPIO, aby wyłączyć przekaźnik
Nie jest on zbyt jasny więc wyjaśnię mamy tutaj RELAY_PIN 4 jest to pin startowy, od którego będziemy liczyć piny. Następnie mamy NUMBER_OF_RELAYS 3 wartość 3 określa ilość pinów po GPIO 4, czyli mamy GPIO 5, GPIO 6. Łącznie daje nam to 3 GPIO, czyli zgodnie z tym co określimy.
W powyższy sposób mamy obsługę wychodzących naszych pinów z arduino mega, ale brakuje nam komunikacji przez USB, więc skorzystajmy z przykładu:
GatewaySerial:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
/* The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2019 Sensnology AB * Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * The ArduinoGateway prints data received from sensors on the serial link. * The gateway accepts input on serial which will be sent out on radio network. * * The GW code is designed for Arduino Nano 328p / 16MHz * * Wire connections (OPTIONAL): * - Inclusion button should be connected between digital pin 3 and GND * - RX/TX/ERR leds need to be connected between +5V (anode) and digital pin 6/5/4 with resistor 270-330R in a series * * LEDs (OPTIONAL): * - To use the feature, uncomment any of the MY_DEFAULT_xx_LED_PINs * - RX (green) - blink fast on radio message received. In inclusion mode will blink fast only on presentation received * - TX (yellow) - blink fast on radio message transmitted. In inclusion mode will blink slowly * - ERR (red) - fast blink on error during transmission error or receive crc error * *//* * The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2019 Sensnology AB * Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * The ArduinoGateway prints data received from sensors on the serial link. * The gateway accepts input on serial which will be sent out on radio network. * * The GW code is designed for Arduino Nano 328p / 16MHz * * Wire connections (OPTIONAL): * - Inclusion button should be connected between digital pin 3 and GND * - RX/TX/ERR leds need to be connected between +5V (anode) and digital pin 6/5/4 with resistor 270-330R in a series * * LEDs (OPTIONAL): * - To use the feature, uncomment any of the MY_DEFAULT_xx_LED_PINs * - RX (green) - blink fast on radio message received. In inclusion mode will blink fast only on presentation received * - TX (yellow) - blink fast on radio message transmitted. In inclusion mode will blink slowly * - ERR (red) - fast blink on error during transmission error or receive crc error * */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
// Enable debug prints to serial monitor #define MY_DEBUG // Enable and select radio type attached #define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode #define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <MySensors.h> void setup() { // Setup locally attached sensors } void presentation() { // Present locally attached sensors } void loop() { // Send locally attached sensor data here } |
Powyższy kod służy do komunikacji przez USB, ale połączymy sobie komunikacje razem z przełącznikami Relay i mamy:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
/* The MySensors Arduino library handles the wireless radio link and protocol * between your home built sensors/actuators and HA controller of choice. * The sensors forms a self healing radio network with optional repeaters. Each * repeater and gateway builds a routing tables in EEPROM which keeps track of the * network topology allowing messages to be routed to nodes. * * Created by Henrik Ekblad <henrik.ekblad@mysensors.org> * Copyright (C) 2013-2019 Sensnology AB * Full contributor list: https://github.com/mysensors/MySensors/graphs/contributors * * Documentation: http://www.mysensors.org * Support Forum: http://forum.mysensors.org * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * ******************************* * * DESCRIPTION * The ArduinoGateway prints data received from sensors on the serial link. * The gateway accepts input on serial which will be sent out on radio network. * * The GW code is designed for Arduino Nano 328p / 16MHz * * Wire connections (OPTIONAL): * - Inclusion button should be connected between digital pin 3 and GND * - RX/TX/ERR leds need to be connected between +5V (anode) and digital pin 6/5/4 with resistor 270-330R in a series * * LEDs (OPTIONAL): * - To use the feature, uncomment any of the MY_DEFAULT_xx_LED_PINs * - RX (green) - blink fast on radio message received. In inclusion mode will blink fast only on presentation received * - TX (yellow) - blink fast on radio message transmitted. In inclusion mode will blink slowly * - ERR (red) - fast blink on error during transmission error or receive crc error * */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
// Enable debug prints to serial monitor #define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode //#define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <MySensors.h> #define RELAY_PIN 22 // Arduino Digital I/O pin number for first relay (second on pin+1 etc) #define NUMBER_OF_RELAYS 9 // Total number of attached relays #define RELAY_ON 1 // GPIO value to write to turn on attached relay #define RELAY_OFF 0 // GPIO value to write to turn off attached relay void before() { for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Then set relay pins in output mode pinMode(pin, OUTPUT); // Set relay to last known state (using eeprom storage) digitalWrite(pin, loadState(sensor)?RELAY_ON:RELAY_OFF); } } void setup() { } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("Relay", "1.0"); for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Register all sensors to gw (they will be created as child devices) present(sensor, S_LIGHT); } } void loop() { } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.getType()==V_STATUS) { // Change relay state digitalWrite(message.getSensor()-1+RELAY_PIN, message.getBool()?RELAY_ON:RELAY_OFF); // Store state in eeprom saveState(message.getSensor(), message.getBool()); // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.getSensor()); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
Wygląda wszystko super, bo mamy połączoną komunikacje usb pomiędzy arduino mega a raspberry Pi. Pozostała nam jeszcze podłączenie pod USB w domoticzu naszej płytki arduino Mega i sprawdzenie, czy działa.
Dodajemy najpierw obsługe, czyli wchodzimy Konfiguracja >> Sprzęt i z listy na dole szukamy “MySensors Gateway USB” po wybraniu wybieramy z listy port szeregowy port do którego jest podłączone nasze arduino i dodajemy własną nazwę w polu Nazwa.
Wchodzimy Konfiguracja >> Urządzenia i segregujemy po IDX. Teraz widzimy wszystkie przekaźniki, które zostały dodane licząć od GPIO 22 do GPIO 30, czyli łącznie 9. Od tej chwili możemy włączać dane wyjścia w naszym arduino za pośrednictwem Domoticza.
Dodawanie przycisków button od zmiany statusu ON/OFF
Zacznijmy od tego, że będziemy potrzebowali nową bibliotekę
Po zainstalowaniu otwórzmy sobie przykład bounce>>more >> Change:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
// This example toggles the debug LED (pin 13) on or off // when a button on pin 2 is pressed. // Include the Bounce2 library found here : // https://github.com/thomasfredericks/Bounce2 #include <Bounce2.h> #define BUTTON_PIN 2 #define LED_PIN 13 int ledState = LOW; Bounce debouncer = Bounce(); // Instantiate a Bounce object void setup() { debouncer.attach(BUTTON_PIN,INPUT_PULLUP); // Attach the debouncer to a pin with INPUT_PULLUP mode debouncer.interval(25); // Use a debounce interval of 25 milliseconds pinMode(LED_PIN,OUTPUT); // Setup the LED digitalWrite(LED_PIN,ledState); } void loop() { debouncer.update(); // Update the Bounce instance if ( debouncer.fell() ) { // Call code if button transitions from HIGH to LOW ledState = !ledState; // Toggle LED state digitalWrite(LED_PIN,ledState); // Apply new LED state } } |
Po uzupełeniu naszego projektu o przycisk button:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
// Enable debug prints to serial monitor #define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode //#define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <MySensors.h> #define RELAY_PIN 22 // Arduino Digital I/O pin number for first relay (second on pin+1 etc) #define NUMBER_OF_RELAYS 9 // Total number of attached relays #define RELAY_ON 1 // GPIO value to write to turn on attached relay #define RELAY_OFF 0 // GPIO value to write to turn off attached relay #include <Bounce2.h> #define BUTTON_PIN 1 #define LED_PIN 30 int ledState = LOW; Bounce debouncer = Bounce(); // Instantiate a Bounce object MyMessage msg(1,V_LIGHT); void before() { for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Then set relay pins in output mode pinMode(pin, OUTPUT); // Set relay to last known state (using eeprom storage) digitalWrite(pin, loadState(sensor)?RELAY_ON:RELAY_OFF); } } void setup() { debouncer.attach(BUTTON_PIN,INPUT_PULLUP); // Attach the debouncer to a pin with INPUT_PULLUP mode debouncer.interval(5); // Use a debounce interval of 25 milliseconds } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("Relay", "1.0"); for (int sensor=1, pin=RELAY_PIN; sensor<=NUMBER_OF_RELAYS; sensor++, pin++) { // Register all sensors to gw (they will be created as child devices) present(sensor, S_LIGHT); } } void loop() { debouncer.update(); // Update the Bounce instance if ( debouncer.fell() ) { // Call code if button transitions from HIGH to LOW ledState = !ledState; // Toggle LED state saveState(1,ledState); digitalWrite(LED_PIN,ledState); // Apply new LED state send(msg.set(ledState)); } } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.getType()==V_STATUS) { // Change relay state digitalWrite(message.getSensor()-1+RELAY_PIN, message.getBool()?RELAY_ON:RELAY_OFF); // Store state in eeprom saveState(message.getSensor(), message.getBool()); // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.getSensor()); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
Powyższy kod obsługuje jeden przycisk monstabilny oraz relay w MySensors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
#define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode //#define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <SPI.h> #include <MySensors.h> #include <Bounce2.h> #define RELAY_PIN0 30 // Arduino Digital I/O pin number for relay #define RELAY_PIN1 29 #define RELAY_PIN2 28 #define RELAY_PIN3 27 #define BUTTON_PIN0 1 // Arduino Digital I/O pin number for button #define BUTTON_PIN1 2 // Arduino Digital I/O pin number for button #define BUTTON_PIN2 3 // Arduino Digital I/O pin number for button #define BUTTON_PIN3 4 // Arduino Digital I/O pin number for button #define CHILD0_ID 100 // Id of the sensor child #define CHILD1_ID 101 // Id of the sensor child #define CHILD2_ID 102 // Id of the sensor child #define CHILD3_ID 103 // Id of the sensor child #define RELAY_ON 1 #define RELAY_OFF 0 Bounce debouncerA = Bounce(); Bounce debouncerB = Bounce(); Bounce debouncerC = Bounce(); Bounce debouncerD = Bounce(); int oldValueA = 0; int oldValueB = 0; int oldValueC = 0; int oldValueD = 0; bool stateA; bool stateB; bool stateC; bool stateD; MyMessage msgA(CHILD0_ID, V_LIGHT); MyMessage msgB(CHILD1_ID, V_LIGHT); MyMessage msgC(CHILD2_ID, V_LIGHT); MyMessage msgD(CHILD3_ID, V_LIGHT); void setup() { // Setup the button pinMode(BUTTON_PIN0, INPUT_PULLUP); pinMode(BUTTON_PIN1, INPUT_PULLUP); pinMode(BUTTON_PIN2, INPUT_PULLUP); pinMode(BUTTON_PIN3, INPUT_PULLUP); // After setting up the button, setup debouncer debouncerA.attach(BUTTON_PIN0); debouncerA.interval(5); debouncerB.attach(BUTTON_PIN1); debouncerB.interval(5); debouncerC.attach(BUTTON_PIN2); debouncerC.interval(5); debouncerD.attach(BUTTON_PIN3); debouncerD.interval(5); // Make sure relays are off when starting up digitalWrite(RELAY_PIN0, RELAY_OFF); digitalWrite(RELAY_PIN1, RELAY_OFF); digitalWrite(RELAY_PIN2, RELAY_OFF); digitalWrite(RELAY_PIN3, RELAY_OFF); // Then set relay pins in output mode pinMode(RELAY_PIN0, OUTPUT); pinMode(RELAY_PIN1, OUTPUT); pinMode(RELAY_PIN2, OUTPUT); pinMode(RELAY_PIN3, OUTPUT); // Set relay to last known state (using eeprom storage) stateA = loadState(CHILD0_ID); digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); stateB = loadState(CHILD1_ID); digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); stateC = loadState(CHILD2_ID); digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); stateD = loadState(CHILD3_ID); digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("4 Relay & button", "1.0"); // Register all sensors to gw (they will be created as child devices) present(CHILD0_ID, S_LIGHT); present(CHILD1_ID, S_LIGHT); present(CHILD2_ID, S_LIGHT); present(CHILD3_ID, S_LIGHT); } /* Example on how to asynchronously check for new messages from gw */ void loop() { debouncerA.update(); // Get the update value int valueA = debouncerA.read(); if (valueA != oldValueA && valueA == 0) { send(msgA.set(stateA ? false : true), true); // Send new state and request ack back } oldValueA = valueA; debouncerB.update(); // Get the update value int valueB = debouncerB.read(); if (valueB != oldValueB && valueB == 0) { send(msgB.set(stateB ? false : true), true); // Send new state and request ack back } oldValueB = valueB; debouncerC.update(); // Get the update value int valueC = debouncerC.read(); if (valueC != oldValueC && valueC == 0) { send(msgC.set(stateC ? false : true), true); // Send new state and request ack back } oldValueC = valueC; debouncerD.update(); // Get the update value int valueD = debouncerD.read(); if (valueD != oldValueD && valueD == 0) { send(msgD.set(stateD ? false : true), true); // Send new state and request ack back } oldValueD = valueD; } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.type == V_LIGHT) { switch (message.sensor) { case CHILD0_ID: stateA = message.getBool(); digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); saveState(CHILD0_ID, stateA); break; case CHILD1_ID: stateB = message.getBool(); digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); saveState(CHILD1_ID, stateB); break; case CHILD2_ID: stateC = message.getBool(); digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); saveState(CHILD2_ID, stateC); break; case CHILD3_ID: stateD = message.getBool(); digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); saveState(CHILD3_ID, stateD); break; } // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.sensor); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
Powyższy kod obsługuje cztery przyciski Monostabilne oraz Relay w MySensors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
#define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode //#define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <SPI.h> #include <MySensors.h> #include <Bounce2.h> #define RELAY_PIN0 30 // Arduino Digital I/O pin number for relay #define RELAY_PIN1 29 #define RELAY_PIN2 28 #define RELAY_PIN3 27 #define BUTTON_PIN0 1 // Arduino Digital I/O pin number for button #define BUTTON_PIN1 2 // Arduino Digital I/O pin number for button #define BUTTON_PIN2 3 // Arduino Digital I/O pin number for button #define BUTTON_PIN3 4 // Arduino Digital I/O pin number for button #define CHILD0_ID 100 // Id of the sensor child #define CHILD1_ID 101 // Id of the sensor child #define CHILD2_ID 102 // Id of the sensor child #define CHILD3_ID 103 // Id of the sensor child #define RELAY_ON 1 #define RELAY_OFF 0 Bounce debouncerA = Bounce(); Bounce debouncerB = Bounce(); Bounce debouncerC = Bounce(); Bounce debouncerD = Bounce(); int oldValueA = 0; int oldValueB = 0; int oldValueC = 0; int oldValueD = 0; bool stateA = false; bool stateB = false; bool stateC = false; bool stateD = false; MyMessage msgA(CHILD0_ID, V_LIGHT); MyMessage msgB(CHILD1_ID, V_LIGHT); MyMessage msgC(CHILD2_ID, V_LIGHT); MyMessage msgD(CHILD3_ID, V_LIGHT); void setup() { // Setup the button pinMode(BUTTON_PIN0, INPUT_PULLUP); pinMode(BUTTON_PIN1, INPUT_PULLUP); pinMode(BUTTON_PIN2, INPUT_PULLUP); pinMode(BUTTON_PIN3, INPUT_PULLUP); // After setting up the button, setup debouncer debouncerA.attach(BUTTON_PIN0); debouncerA.interval(5); debouncerB.attach(BUTTON_PIN1); debouncerB.interval(5); debouncerC.attach(BUTTON_PIN2); debouncerC.interval(5); debouncerD.attach(BUTTON_PIN3); debouncerD.interval(5); // Make sure relays are off when starting up digitalWrite(RELAY_PIN0, RELAY_OFF); digitalWrite(RELAY_PIN1, RELAY_OFF); digitalWrite(RELAY_PIN2, RELAY_OFF); digitalWrite(RELAY_PIN3, RELAY_OFF); // Then set relay pins in output mode pinMode(RELAY_PIN0, OUTPUT); pinMode(RELAY_PIN1, OUTPUT); pinMode(RELAY_PIN2, OUTPUT); pinMode(RELAY_PIN3, OUTPUT); } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("4 Relay & button", "1.0"); // Register all sensors to gw (they will be created as child devices) present(CHILD0_ID, S_LIGHT); present(CHILD1_ID, S_LIGHT); present(CHILD2_ID, S_LIGHT); present(CHILD3_ID, S_LIGHT); } /* Example on how to asynchronously check for new messages from gw */ void loop() { debouncerA.update(); // Get the update value int valueA = debouncerA.read(); if (valueA != oldValueA) { send(msgA.set(stateA ? false : true), false); // Send new state and request ack back stateA = stateA ? false : true; digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueA = valueA; debouncerB.update(); // Get the update value int valueB = debouncerB.read(); if (valueB != oldValueB) { send(msgB.set(stateB ? false : true), false); // Send new state and request ack back stateB = stateB ? false : true; digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueB = valueB; debouncerC.update(); // Get the update value int valueC = debouncerC.read(); if (valueC != oldValueC) { send(msgC.set(stateC ? false : true), false); // Send new state and request ack back stateC = stateC ? false : true; digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueC = valueC; debouncerD.update(); // Get the update value int valueD = debouncerD.read(); if (valueD != oldValueD) { send(msgD.set(stateD ? false : true), false); // Send new state and request ack back stateD = stateD ? false : true; digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueD = valueD; } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.type == V_LIGHT) { switch (message.sensor) { case CHILD0_ID: stateA = message.getBool(); digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); saveState(CHILD0_ID, stateA); break; case CHILD1_ID: stateB = message.getBool(); digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); saveState(CHILD1_ID, stateB); break; case CHILD2_ID: stateC = message.getBool(); digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); saveState(CHILD2_ID, stateC); break; case CHILD3_ID: stateD = message.getBool(); digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); saveState(CHILD3_ID, stateD); break; } // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.sensor); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
Powyższy kod obsługuje cztery przyciski Bistabilne oraz Relay w MySensors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
#define MY_DEBUG // Enable and select radio type attached //#define MY_RADIO_RF24 //#define MY_RADIO_NRF5_ESB //#define MY_RADIO_RFM69 //#define MY_RADIO_RFM95 // Set LOW transmit power level as default, if you have an amplified NRF-module and // power your radio separately with a good regulator you can turn up PA level. #define MY_RF24_PA_LEVEL RF24_PA_LOW // Enable serial gateway #define MY_GATEWAY_SERIAL // Define a lower baud rate for Arduinos running on 8 MHz (Arduino Pro Mini 3.3V & SenseBender) #if F_CPU == 8000000L #define MY_BAUD_RATE 38400 #endif // Enable inclusion mode //#define MY_INCLUSION_MODE_FEATURE // Enable Inclusion mode button on gateway //#define MY_INCLUSION_BUTTON_FEATURE // Inverses behavior of inclusion button (if using external pullup) //#define MY_INCLUSION_BUTTON_EXTERNAL_PULLUP // Set inclusion mode duration (in seconds) #define MY_INCLUSION_MODE_DURATION 60 // Digital pin used for inclusion mode button //#define MY_INCLUSION_MODE_BUTTON_PIN 3 // Set blinking period #define MY_DEFAULT_LED_BLINK_PERIOD 300 // Inverses the behavior of leds //#define MY_WITH_LEDS_BLINKING_INVERSE // Flash leds on rx/tx/err // Uncomment to override default HW configurations //#define MY_DEFAULT_ERR_LED_PIN 4 // Error led pin //#define MY_DEFAULT_RX_LED_PIN 6 // Receive led pin //#define MY_DEFAULT_TX_LED_PIN 5 // the PCB, on board LED #include <SPI.h> #include <MySensors.h> #include <Bounce2.h> #define RELAY_PIN0 22 // Arduino Digital I/O pin number for relay #define RELAY_PIN1 23 #define RELAY_PIN2 24 #define RELAY_PIN3 25 #define RELAY_PIN4 26 // Arduino Digital I/O pin number for relay #define RELAY_PIN5 27 #define RELAY_PIN6 28 #define RELAY_PIN7 29 #define RELAY_PIN8 30 // Arduino Digital I/O pin number for relay #define RELAY_PIN9 31 #define RELAY_PIN10 32 #define RELAY_PIN11 33 #define RELAY_PIN12 34 // Arduino Digital I/O pin number for relay #define RELAY_PIN13 35 #define RELAY_PIN14 36 #define RELAY_PIN15 37 #define RELAY_PIN16 38 #define RELAY_PIN17 39 // Arduino Digital I/O pin number for relay #define RELAY_PIN18 40 #define RELAY_PIN19 41 #define RELAY_PIN20 42 #define BUTTON_PIN0 A0 // Arduino Digital I/O pin number for button #define BUTTON_PIN1 A1 // Arduino Digital I/O pin number for button #define BUTTON_PIN2 A2 // Arduino Digital I/O pin number for button #define BUTTON_PIN3 A3 // Arduino Digital I/O pin number for button #define BUTTON_PIN4 A4 // Arduino Digital I/O pin number for button #define BUTTON_PIN5 A5 // Arduino Digital I/O pin number for button #define BUTTON_PIN6 A6 // Arduino Digital I/O pin number for button #define BUTTON_PIN7 A7 // Arduino Digital I/O pin number for button #define BUTTON_PIN8 A8 // Arduino Digital I/O pin number for button #define BUTTON_PIN9 A9 // Arduino Digital I/O pin number for button #define BUTTON_PIN10 A10 // Arduino Digital I/O pin number for button #define BUTTON_PIN11 A11 // Arduino Digital I/O pin number for button #define BUTTON_PIN12 A12 // Arduino Digital I/O pin number for button #define BUTTON_PIN13 A13 // Arduino Digital I/O pin number for button #define BUTTON_PIN14 A14 // Arduino Digital I/O pin number for button #define BUTTON_PIN15 53 // Arduino Digital I/O pin number for button #define BUTTON_PIN16 52 // Arduino Digital I/O pin number for button #define BUTTON_PIN17 51 // Arduino Digital I/O pin number for button #define BUTTON_PIN18 50 // Arduino Digital I/O pin number for button #define BUTTON_PIN19 49 // Arduino Digital I/O pin number for button #define BUTTON_PIN20 48 // Arduino Digital I/O pin number for button #define CHILD0_ID 100 // Id of the sensor child #define CHILD1_ID 101 // Id of the sensor child #define CHILD2_ID 102 // Id of the sensor child #define CHILD3_ID 103 // Id of the sensor child #define CHILD4_ID 104 // Id of the sensor child #define CHILD5_ID 105 // Id of the sensor child #define CHILD6_ID 106 // Id of the sensor child #define CHILD7_ID 107 // Id of the sensor child #define CHILD8_ID 108 // Id of the sensor child #define CHILD9_ID 109 // Id of the sensor child #define CHILD10_ID 110 // Id of the sensor child #define CHILD11_ID 111 // Id of the sensor child #define CHILD12_ID 112 // Id of the sensor child #define CHILD13_ID 113 // Id of the sensor child #define CHILD14_ID 114 // Id of the sensor child #define CHILD15_ID 115 // Id of the sensor child #define CHILD16_ID 116 // Id of the sensor child #define CHILD17_ID 117 // Id of the sensor child #define CHILD18_ID 118 // Id of the sensor child #define CHILD19_ID 119 // Id of the sensor child #define CHILD20_ID 120 // Id of the sensor child #define RELAY_ON 1 #define RELAY_OFF 0 //A B C D E F G H I J K L M N O P R S T W X Bounce debouncerA = Bounce(); //1 Bounce debouncerB = Bounce(); Bounce debouncerC = Bounce(); Bounce debouncerD = Bounce(); Bounce debouncerE = Bounce(); //5 Bounce debouncerF = Bounce(); Bounce debouncerG = Bounce(); Bounce debouncerH = Bounce(); Bounce debouncerI = Bounce(); Bounce debouncerJ = Bounce(); //10 Bounce debouncerK = Bounce(); Bounce debouncerL = Bounce(); Bounce debouncerM = Bounce(); Bounce debouncerN = Bounce(); Bounce debouncerO = Bounce(); //15 Bounce debouncerP = Bounce(); Bounce debouncerR = Bounce(); Bounce debouncerS = Bounce(); Bounce debouncerT = Bounce(); Bounce debouncerW = Bounce(); //20 Bounce debouncerX = Bounce(); //A B C D E F G H I J K L M N O P R S T W X int oldValueA = 0; //1 int oldValueB = 0; int oldValueC = 0; int oldValueD = 0; int oldValueE = 0; //5 int oldValueF = 0; int oldValueG = 0; int oldValueH = 0; int oldValueI = 0; int oldValueJ = 0; //10 int oldValueK = 0; int oldValueL = 0; int oldValueM = 0; int oldValueN = 0; int oldValueO = 0; //15 int oldValueP = 0; int oldValueR = 0; int oldValueS = 0; int oldValueT = 0; int oldValueW = 0; //20 int oldValueX = 0; //A B C D E F G H I J K L M N O P R S T W X bool stateA = false; //1 bool stateB = false; bool stateC = false; bool stateD = false; bool stateE = false; //5 bool stateF = false; bool stateG = false; bool stateH = false; bool stateI = false; bool stateJ = false; //10 bool stateK = false; bool stateL = false; bool stateM = false; bool stateN = false; bool stateO = false; //15 bool stateP = false; bool stateR = false; bool stateS = false; bool stateT = false; bool stateW = false; //20 bool stateX = false; //A B C D E F G H I J K L M N O P R S T W X MyMessage msgA(CHILD0_ID, V_LIGHT); //1 MyMessage msgB(CHILD1_ID, V_LIGHT); MyMessage msgC(CHILD2_ID, V_LIGHT); MyMessage msgD(CHILD3_ID, V_LIGHT); MyMessage msgE(CHILD4_ID, V_LIGHT); //5 MyMessage msgF(CHILD5_ID, V_LIGHT); MyMessage msgG(CHILD6_ID, V_LIGHT); MyMessage msgH(CHILD7_ID, V_LIGHT); MyMessage msgI(CHILD8_ID, V_LIGHT); MyMessage msgJ(CHILD9_ID, V_LIGHT); //10 MyMessage msgK(CHILD10_ID, V_LIGHT); MyMessage msgL(CHILD11_ID, V_LIGHT); MyMessage msgM(CHILD12_ID, V_LIGHT); MyMessage msgN(CHILD13_ID, V_LIGHT); MyMessage msgO(CHILD14_ID, V_LIGHT); //15 MyMessage msgP(CHILD15_ID, V_LIGHT); MyMessage msgR(CHILD16_ID, V_LIGHT); MyMessage msgS(CHILD17_ID, V_LIGHT); MyMessage msgT(CHILD18_ID, V_LIGHT); MyMessage msgW(CHILD19_ID, V_LIGHT); //20 MyMessage msgX(CHILD20_ID, V_LIGHT); void setup() { // Setup the button pinMode(BUTTON_PIN0, INPUT_PULLUP); //1 pinMode(BUTTON_PIN1, INPUT_PULLUP); pinMode(BUTTON_PIN2, INPUT_PULLUP); pinMode(BUTTON_PIN3, INPUT_PULLUP); pinMode(BUTTON_PIN4, INPUT_PULLUP); //5 pinMode(BUTTON_PIN5, INPUT_PULLUP); pinMode(BUTTON_PIN6, INPUT_PULLUP); pinMode(BUTTON_PIN7, INPUT_PULLUP); pinMode(BUTTON_PIN8, INPUT_PULLUP); pinMode(BUTTON_PIN9, INPUT_PULLUP); //10 pinMode(BUTTON_PIN10, INPUT_PULLUP); pinMode(BUTTON_PIN11, INPUT_PULLUP); pinMode(BUTTON_PIN12, INPUT_PULLUP); pinMode(BUTTON_PIN13, INPUT_PULLUP); pinMode(BUTTON_PIN14, INPUT_PULLUP); //15 pinMode(BUTTON_PIN15, INPUT_PULLUP); pinMode(BUTTON_PIN16, INPUT_PULLUP); pinMode(BUTTON_PIN17, INPUT_PULLUP); pinMode(BUTTON_PIN18, INPUT_PULLUP); pinMode(BUTTON_PIN19, INPUT_PULLUP); //20 pinMode(BUTTON_PIN20, INPUT_PULLUP); // After setting up the button, setup debouncer debouncerA.attach(BUTTON_PIN0); //1 debouncerA.interval(5); debouncerB.attach(BUTTON_PIN1); debouncerB.interval(5); debouncerC.attach(BUTTON_PIN2); debouncerC.interval(5); debouncerD.attach(BUTTON_PIN3); debouncerD.interval(5); debouncerE.attach(BUTTON_PIN4); //5 debouncerE.interval(5); debouncerF.attach(BUTTON_PIN5); debouncerF.interval(5); debouncerG.attach(BUTTON_PIN6); debouncerG.interval(5); debouncerH.attach(BUTTON_PIN7); debouncerH.interval(5); debouncerI.attach(BUTTON_PIN8); debouncerI.interval(5); debouncerJ.attach(BUTTON_PIN9); //10 debouncerJ.interval(5); debouncerK.attach(BUTTON_PIN10); debouncerK.interval(5); debouncerL.attach(BUTTON_PIN11); debouncerL.interval(5); debouncerM.attach(BUTTON_PIN12); debouncerM.interval(5); debouncerN.attach(BUTTON_PIN13); debouncerN.interval(5); debouncerO.attach(BUTTON_PIN14); //15 debouncerO.interval(5); debouncerP.attach(BUTTON_PIN15); debouncerP.interval(5); debouncerR.attach(BUTTON_PIN16); debouncerR.interval(5); debouncerS.attach(BUTTON_PIN17); debouncerS.interval(5); debouncerT.attach(BUTTON_PIN18); debouncerT.interval(5); debouncerW.attach(BUTTON_PIN19); //20 debouncerW.interval(5); debouncerX.attach(BUTTON_PIN20); debouncerX.interval(5); // Make sure relays are off when starting up digitalWrite(RELAY_PIN0, RELAY_OFF); //1 digitalWrite(RELAY_PIN1, RELAY_OFF); digitalWrite(RELAY_PIN2, RELAY_OFF); digitalWrite(RELAY_PIN3, RELAY_OFF); digitalWrite(RELAY_PIN4, RELAY_OFF); //5 digitalWrite(RELAY_PIN5, RELAY_OFF); digitalWrite(RELAY_PIN6, RELAY_OFF); digitalWrite(RELAY_PIN7, RELAY_OFF); digitalWrite(RELAY_PIN8, RELAY_OFF); digitalWrite(RELAY_PIN9, RELAY_OFF); //10 digitalWrite(RELAY_PIN10, RELAY_OFF); digitalWrite(RELAY_PIN11, RELAY_OFF); digitalWrite(RELAY_PIN12, RELAY_OFF); digitalWrite(RELAY_PIN13, RELAY_OFF); digitalWrite(RELAY_PIN14, RELAY_OFF); //15 digitalWrite(RELAY_PIN15, RELAY_OFF); digitalWrite(RELAY_PIN16, RELAY_OFF); digitalWrite(RELAY_PIN17, RELAY_OFF); digitalWrite(RELAY_PIN18, RELAY_OFF); digitalWrite(RELAY_PIN19, RELAY_OFF); //20 digitalWrite(RELAY_PIN20, RELAY_OFF); // Then set relay pins in output mode pinMode(RELAY_PIN0, OUTPUT); //1 pinMode(RELAY_PIN1, OUTPUT); pinMode(RELAY_PIN2, OUTPUT); pinMode(RELAY_PIN3, OUTPUT); pinMode(RELAY_PIN4, OUTPUT); //5 pinMode(RELAY_PIN5, OUTPUT); pinMode(RELAY_PIN6, OUTPUT); pinMode(RELAY_PIN7, OUTPUT); pinMode(RELAY_PIN8, OUTPUT); pinMode(RELAY_PIN9, OUTPUT); //10 pinMode(RELAY_PIN10, OUTPUT); pinMode(RELAY_PIN11, OUTPUT); pinMode(RELAY_PIN12, OUTPUT); pinMode(RELAY_PIN13, OUTPUT); pinMode(RELAY_PIN14, OUTPUT); //15 pinMode(RELAY_PIN15, OUTPUT); pinMode(RELAY_PIN16, OUTPUT); pinMode(RELAY_PIN17, OUTPUT); pinMode(RELAY_PIN18, OUTPUT); pinMode(RELAY_PIN19, OUTPUT); //20 pinMode(RELAY_PIN20, OUTPUT); } void presentation() { // Send the sketch version information to the gateway and Controller sendSketchInfo("21 Relay & button", "2.0"); // Register all sensors to gw (they will be created as child devices) present(CHILD0_ID, S_LIGHT); present(CHILD1_ID, S_LIGHT); present(CHILD2_ID, S_LIGHT); present(CHILD3_ID, S_LIGHT); present(CHILD4_ID, S_LIGHT); //5 present(CHILD5_ID, S_LIGHT); present(CHILD6_ID, S_LIGHT); present(CHILD7_ID, S_LIGHT); present(CHILD8_ID, S_LIGHT); present(CHILD9_ID, S_LIGHT); //10 present(CHILD10_ID, S_LIGHT); present(CHILD11_ID, S_LIGHT); present(CHILD12_ID, S_LIGHT); present(CHILD13_ID, S_LIGHT); present(CHILD14_ID, S_LIGHT); //15 present(CHILD15_ID, S_LIGHT); present(CHILD16_ID, S_LIGHT); present(CHILD17_ID, S_LIGHT); present(CHILD18_ID, S_LIGHT); present(CHILD19_ID, S_LIGHT); //20 present(CHILD20_ID, S_LIGHT); } /* Example on how to asynchronously check for new messages from gw */ void loop() { debouncerA.update(); // Get the update value int valueA = debouncerA.read(); if (valueA != oldValueA) { send(msgA.set(stateA ? false : true), false); // Send new state and request ack back stateA = stateA ? false : true; digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueA = valueA; debouncerB.update(); // Get the update value int valueB = debouncerB.read(); if (valueB != oldValueB) { send(msgB.set(stateB ? false : true), false); // Send new state and request ack back stateB = stateB ? false : true; digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueB = valueB; debouncerC.update(); // Get the update value int valueC = debouncerC.read(); if (valueC != oldValueC) { send(msgC.set(stateC ? false : true), false); // Send new state and request ack back stateC = stateC ? false : true; digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueC = valueC; debouncerD.update(); // Get the update value int valueD = debouncerD.read(); if (valueD != oldValueD) { send(msgD.set(stateD ? false : true), false); // Send new state and request ack back stateD = stateD ? false : true; digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueD = valueD; debouncerE.update(); // Get the update value int valueE = debouncerE.read(); if (valueE != oldValueE) { send(msgE.set(stateE ? false : true), false); // Send new state and request ack back stateE = stateE ? false : true; digitalWrite(RELAY_PIN4, stateE ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueE = valueE; //5 debouncerF.update(); // Get the update value int valueF = debouncerF.read(); if (valueF != oldValueF) { send(msgF.set(stateF ? false : true), false); // Send new state and request ack back stateF = stateF ? false : true; digitalWrite(RELAY_PIN5, stateF ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueF = valueF; debouncerG.update(); // Get the update value int valueG = debouncerG.read(); if (valueG != oldValueG) { send(msgG.set(stateG ? false : true), false); // Send new state and request ack back stateG = stateG ? false : true; digitalWrite(RELAY_PIN6, stateG ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueG = valueG; debouncerH.update(); // Get the update value int valueH = debouncerH.read(); if (valueH != oldValueH) { send(msgH.set(stateH ? false : true), false); // Send new state and request ack back stateH = stateH ? false : true; digitalWrite(RELAY_PIN7, stateH ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueH = valueH; debouncerI.update(); // Get the update value int valueI = debouncerI.read(); if (valueI != oldValueI) { send(msgI.set(stateI ? false : true), false); // Send new state and request ack back stateI = stateI ? false : true; digitalWrite(RELAY_PIN8, stateI ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueI = valueI; debouncerJ.update(); // Get the update value int valueJ = debouncerJ.read(); if (valueJ != oldValueJ) { send(msgJ.set(stateJ ? false : true), false); // Send new state and request ack back stateJ = stateJ ? false : true; digitalWrite(RELAY_PIN9, stateJ ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueJ = valueJ; //10 debouncerK.update(); // Get the update value int valueK = debouncerK.read(); if (valueK != oldValueK) { send(msgK.set(stateK ? false : true), false); // Send new state and request ack back stateK = stateK ? false : true; digitalWrite(RELAY_PIN10, stateK ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueK = valueK; debouncerL.update(); // Get the update value int valueL = debouncerL.read(); if (valueL != oldValueL) { send(msgL.set(stateL ? false : true), false); // Send new state and request ack back stateL = stateL ? false : true; digitalWrite(RELAY_PIN11, stateL ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueL = valueL; debouncerM.update(); // Get the update value int valueM = debouncerM.read(); if (valueM != oldValueM) { send(msgM.set(stateM ? false : true), false); // Send new state and request ack back stateM = stateM ? false : true; digitalWrite(RELAY_PIN12, stateM ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueM = valueM; debouncerN.update(); // Get the update value int valueN = debouncerN.read(); if (valueN != oldValueN) { send(msgN.set(stateN ? false : true), false); // Send new state and request ack back stateN = stateN ? false : true; digitalWrite(RELAY_PIN13, stateN ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueN = valueN; debouncerO.update(); // Get the update value int valueO = debouncerO.read(); if (valueO != oldValueO) { send(msgO.set(stateO ? false : true), false); // Send new state and request ack back stateO = stateO ? false : true; digitalWrite(RELAY_PIN14, stateO ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueO = valueO; //15 debouncerP.update(); // Get the update value int valueP = debouncerP.read(); if (valueP != oldValueP) { send(msgP.set(stateP ? false : true), false); // Send new state and request ack back stateP = stateP ? false : true; digitalWrite(RELAY_PIN15, stateP ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueP = valueP; debouncerR.update(); // Get the update value int valueR = debouncerR.read(); if (valueR != oldValueR) { send(msgR.set(stateR ? false : true), false); // Send new state and request ack back stateR = stateR ? false : true; digitalWrite(RELAY_PIN16, stateR ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueR = valueR; debouncerS.update(); // Get the update value int valueS = debouncerS.read(); if (valueS != oldValueS) { send(msgS.set(stateS ? false : true), false); // Send new state and request ack back stateS = stateS ? false : true; digitalWrite(RELAY_PIN17, stateS ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueS = valueS; debouncerT.update(); // Get the update value int valueT = debouncerT.read(); if (valueT != oldValueT) { send(msgT.set(stateT ? false : true), false); // Send new state and request ack back stateT = stateT ? false : true; digitalWrite(RELAY_PIN18, stateT ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueT = valueT; debouncerW.update(); // Get the update value int valueW = debouncerW.read(); if (valueW != oldValueW) { send(msgW.set(stateW ? false : true), false); // Send new state and request ack back stateW = stateW ? false : true; digitalWrite(RELAY_PIN19, stateW ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueW = valueW; //20 debouncerX.update(); // Get the update value int valueX = debouncerX.read(); if (valueX != oldValueX) { send(msgX.set(stateX ? false : true), false); // Send new state and request ack back stateX = stateX ? false : true; digitalWrite(RELAY_PIN20, stateX ? RELAY_ON : RELAY_OFF); // toggle the relay } oldValueX = valueX; } void receive(const MyMessage &message) { // We only expect one type of message from controller. But we better check anyway. if (message.type == V_LIGHT) { switch (message.sensor) { case CHILD0_ID: stateA = message.getBool(); digitalWrite(RELAY_PIN0, stateA ? RELAY_ON : RELAY_OFF); saveState(CHILD0_ID, stateA); break; case CHILD1_ID: stateB = message.getBool(); digitalWrite(RELAY_PIN1, stateB ? RELAY_ON : RELAY_OFF); saveState(CHILD1_ID, stateB); break; case CHILD2_ID: stateC = message.getBool(); digitalWrite(RELAY_PIN2, stateC ? RELAY_ON : RELAY_OFF); saveState(CHILD2_ID, stateC); break; case CHILD3_ID: stateD = message.getBool(); digitalWrite(RELAY_PIN3, stateD ? RELAY_ON : RELAY_OFF); saveState(CHILD3_ID, stateD); break; case CHILD4_ID: stateE = message.getBool(); digitalWrite(RELAY_PIN4, stateE ? RELAY_ON : RELAY_OFF); saveState(CHILD4_ID, stateE); break; //5 case CHILD5_ID: stateF = message.getBool(); digitalWrite(RELAY_PIN5, stateF ? RELAY_ON : RELAY_OFF); saveState(CHILD5_ID, stateF); break; case CHILD6_ID: stateG = message.getBool(); digitalWrite(RELAY_PIN6, stateG ? RELAY_ON : RELAY_OFF); saveState(CHILD6_ID, stateG); break; case CHILD7_ID: stateH = message.getBool(); digitalWrite(RELAY_PIN7, stateH ? RELAY_ON : RELAY_OFF); saveState(CHILD7_ID, stateH); break; case CHILD8_ID: stateI = message.getBool(); digitalWrite(RELAY_PIN8, stateI ? RELAY_ON : RELAY_OFF); saveState(CHILD8_ID, stateI); break; case CHILD9_ID: stateJ = message.getBool(); digitalWrite(RELAY_PIN9, stateJ ? RELAY_ON : RELAY_OFF); saveState(CHILD9_ID, stateJ); break; //10 case CHILD10_ID: stateK = message.getBool(); digitalWrite(RELAY_PIN10, stateK ? RELAY_ON : RELAY_OFF); saveState(CHILD10_ID, stateK); break; case CHILD11_ID: stateL = message.getBool(); digitalWrite(RELAY_PIN11, stateL ? RELAY_ON : RELAY_OFF); saveState(CHILD11_ID, stateL); break; case CHILD12_ID: stateM = message.getBool(); digitalWrite(RELAY_PIN12, stateM ? RELAY_ON : RELAY_OFF); saveState(CHILD12_ID, stateM); break; case CHILD13_ID: stateN = message.getBool(); digitalWrite(RELAY_PIN13, stateN ? RELAY_ON : RELAY_OFF); saveState(CHILD13_ID, stateN); break; case CHILD14_ID: stateO = message.getBool(); digitalWrite(RELAY_PIN14, stateO ? RELAY_ON : RELAY_OFF); saveState(CHILD14_ID, stateO); break; //15 case CHILD15_ID: stateP = message.getBool(); digitalWrite(RELAY_PIN15, stateP ? RELAY_ON : RELAY_OFF); saveState(CHILD15_ID, stateP); break; case CHILD16_ID: stateR = message.getBool(); digitalWrite(RELAY_PIN16, stateR ? RELAY_ON : RELAY_OFF); saveState(CHILD16_ID, stateR); break; case CHILD17_ID: stateS = message.getBool(); digitalWrite(RELAY_PIN17, stateS ? RELAY_ON : RELAY_OFF); saveState(CHILD17_ID, stateS); break; case CHILD18_ID: stateT = message.getBool(); digitalWrite(RELAY_PIN18, stateT ? RELAY_ON : RELAY_OFF); saveState(CHILD18_ID, stateT); break; case CHILD19_ID: stateW = message.getBool(); digitalWrite(RELAY_PIN19, stateW ? RELAY_ON : RELAY_OFF); saveState(CHILD19_ID, stateW); break; //20 case CHILD20_ID: stateX = message.getBool(); digitalWrite(RELAY_PIN20, stateX ? RELAY_ON : RELAY_OFF); saveState(CHILD20_ID, stateX); break; } // Write some debug info Serial.print("Incoming change for sensor:"); Serial.print(message.sensor); Serial.print(", New status: "); Serial.println(message.getBool()); } } |
Powyższy kod obsługuje 21 sterowników Bistabilnych oraz przełączników.